Ready, Set, Go! Warum wir ein Seepferdchen zum Schwitzen bringen sollten
Ein neuer Morgen bricht an und mit dem Blick in den Spiegel nimmt man sich mal wieder vor mehr Sport zu treiben. Doch dann ist der Tag wie so oft wieder viel zu stressig und man denkt sich „Ohje wieder nicht geschafft, aber morgen packe ich es wirklich an!“ So geht es Tag für Tag weiter…Wer kennt es nicht?
In der heutigen Zeit, in der Unmengen an Artikeln über körperliche Fitness und gesunde Ernährung allgegenwärtig sind, kann man sich diesem Thema kaum noch entziehen. Während es dabei allerdings hauptsächlich um das äußere Erscheinungsbild geht, gibt es noch einen weiteren Grund körperlich aktiv zu werden. Wart ihr auch schonmal so gestresst und geistig erschöpft, dass ihr euch einfach nur auspowern wolltet? Wenn ja: Wie ging es euch danach? Lief das Lernen nicht viel besser, weil ihr euch besser konzentrieren konntet? Um diesen Effekt zu erklären, ist die Neurowissenschaft genau der richtige Ansprechpartner... Sportmuffel aufgepasst!
Eine Forschergruppe um Stillman (2016)[1] untersuchte den Einfluss von körperlicher Aktivität auf exekutive kognitive Funktionen (Funktionen, mit denen wir unser Handeln steuern) sowie auf das explizite (bewusst, aber nicht immer verfügbar) und das implizite (unbewusst, aber immer verfügbar) Gedächtnis.
Literaturquellen
Stillman, C. M., Watt, J. C., Grove, G. A., Jr., Wollam, M. E., Uyar, F., Mataro, M., Cohen, N. J., Howard, D. V., Howard, J. H., Jr., & Erickson, K. I. (2016). Physical activity is associated with reduced implicit learning but enhanced relational memory and executive functioning in young adults. PLoS ONE, 11(9), Article e0162100. https://doi.org/10.1371/journal.pone.0162100
Lautenschlager N.T., Cox K.L., Flicker L., Foster J.K., van Bockxmeer F.M., Xiao J., Greenop, K.R. & Almeida, O.P. (2008). Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: a randomized trial. JAMA, 300 (9), 1027–37. doi: 10.1001/jama.300.9.1027
van Praag H. (2008). Neurogenesis and exercise: past and future directions. Neuromolecular Med, 10 (2), 128–40. doi: 10.1007/s12017-008-8028-z
Colcombe S.J., Erickson K.I., Scalf P.E., Kim J.S., Prakash R., McAuley E., et al. (2006). Aerobic Exercise Training Increases Brain Volume in Aging Humans. J Gerontol A Biol Sci Med Sci, 61 (11), 1166–70. doi: 10.1093/gerona/61.11.1166
Eysenck, M. W. & Keane, M. T. (2015). Cognitive Psychology: A Student’s Handbook (7. Aufl.). Psychology Press.
Duff, M. C., Covington, N. V., Hilverman, C., & Cohen, N. J. (2020). Semantic memory and the hippocampus: Revisiting, reaffirming, and extending the reach of their critical relationship. Frontiers in Human Neuroscience, 13, Article 471. https://doi.org/10.3389/fnhum.2019.00471
Frankland PW, Bontempi B. The organization of recent and remote memories. Nat Rev Neurosci. 2005 Feb;6(2):119-30. doi: 10.1038/nrn1607. PMID: 15685217.
Janacsek K. and Nemeth D. (2012). Predicting the future: From implicit learning to consolidation. Int J Psychophysiol, 83 (2), 213–21. doi: 10.1016/j.ijpsycho.2011.11.012
Rieckmann A., Fischer H. & Bäckman L. (2010). Activation in striatum and medial temporal lobe during sequence learning in younger and older adults: Relations to performance. NeuroImage, 50 (3), 1303–12. doi: 10.1016/j.neuroimage
Bennett I.J., Madden D.J., Vaidya C.J., Howard J.H. & Howard D.V. (2011). White matter integrity correlates of implicit sequence learning in healthy aging. Neurobiol Aging, 32 (12), 2317.e1-12. doi: 10.1016/j.neurobiolaging.2010.03.017
Nemeth D., Janacsek K., Polner B. & Kovacs Z.A. (2012). Boosting Human Learning by Hypnosis. Cerebral Cortex,23 (4), 801–5. doi: 10.1093/cercor/bhs068
Simon J.R., Vaidya C.J., Howard J.H. Jr & Howard D.V. (2012). The effects of aging on the neural basis of implicit associative learning in a probabilistic triplets learning task. J Cogn Neurosci, 24 (2), 451–63. doi: 10.1162/jocn_a_00116
Gillan C.M., Papmeyer M., Morein-Zamir S., Sahakian B.J., Fineberg N.A., Robbins T.W. & de Wit, S. (2011). Disruption in the Balance Between Goal-Directed Behavior and Habit Learning in Obsessive-Compulsive Disorder. Am J Psychiatry , 168 (7), 18–26. doi: 10.1176/appi.ajp.2011.10071062
Howard J.H. Jr, Howard D.V., Dennis N.A. & Kelly A.J. (2008). Implicit learning of predictive relationships in three-element visual sequences by young and old adults. J Exp Psychol Learn Mem Cogn, 34 (5), 1139–57. doi: 10.1037/a0012797.
Watson P.D., Voss J.L., Warren D.E., Tranel D. & Cohen N.J. (2013). Spatial reconstruction by patients with hippocampal damage is dominated by relational memory errors. Hippocampus, 23 (7), 570–80. doi: 10. 1002/hipo.22115
MacLeod C.M. (1991). Half a century of research on the Stroop effect: an integrative review. Psycholpgical Bulletin,109 (2), 163–203. doi: 10.1037/0033-2909.109.2.163
Baker L.D., Frank L.L., Foster-Schubert K., Green P.S., Wilkinson C.W., McTiernan A., Plymate, S.R., Fishel, M.A., Watson, G.S., Cholerton, B.A., Duncan, G.E., Mehta, P.D. & Craft, S. (2010). Effects of aerobic exercise on mild cognitive impairment: a controlled trial. Arch Neurol, 67 (1), 71-9. doi: 10.1001/ archneurol.2009.307
Middleton L., Kirkland S. & Rockwood K. (2008). Prevention of CIND by physical activity: Different impact on VCIND compared with MCI. Journal of the Neurological Sciences, 269 (1-2), 80-84. doi: 10.1016/j.jns.2007.04.054
Colcombe S. & Kramer A.F. (2003). Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol Sci, 14 (2), 125–30. doi: 10.1111/1467-9280.t01-1-01430
Statton M.A., Encarnacion M., Celnik P. & Bastian A.J. (2015). A Single Bout of Moderate Aerobic Exercise Improves Motor Skill Acquisition. PLOS ONE, 10 (10), e0141393. doi: 10.1371/journal.pone.0141393
Mang C.S., Snow N.J., Campbell K.L., Ross C.J.D. & Boyd L.A. (2014). A single bout of high-intensity aerobic exercise facilitates response to paired associative stimulation and promotes sequence-specific implicit motor learning. Journal of Applied Physiology, 117 (11), 1325–36. doi: 10.1152/japplphysiol.00498.2014
DiMartino A., Scheres A., Margulies D.S., Kelly A.M.C., Uddin L.Q., Shehzad Z., Biswal, B., Walters, J.R., Castellanos, F. X. & Milham, M.P. (2008). Functional connectivity of human striatum: A resting state fMRI study. Cerebral Cortex, 18 (12), 2735–47. doi: 10.1093/cercor/ bhn041
Korol D.L. (2004). Role of estrogen in balancing contributions from multiple memory systems. PLOS ONE, 11 (9), e0162100. doi: 10.1371/journal.pone.0162100
Erickson K.I., Colcombe S.J., Elavsky S., McAuley E., Korol D.L., Scalf P.E. & Kramer, A.F. (2007). Interactive effects of fitness and hormone treatment on brain health in postmenopausal women. Neurobiol Aging, 28 (2), 179–85. doi: 10.1016/j.neurobiolaging.2005.11.016
Berchtold N.C., Kesslak J.P., Pike C.J., Adlard P.A. & Cotman C.W. (2001). Estrogen and exercise interact to regulate brain-derived neurotrophic factor mRNA and protein expression in the hippocampus. Eur J Neurosci, 14 (12), 1992–2002. doi: 10.1046/j.0953-816x.2001.01825.x
Volkow N.D., Fowler J.S., Wang G.-J. & Goldstein R.Z. (2002). Role of Dopamine, the Frontal Cortex and Memory Circuits in Drug Addiction: Insight from Imaging Studies. Neurobiol Learn Mem, 78 (3), 610–24. doi: 10.1006/nlme.2002.4099
Colcombe S.J., Kramer A.F., Erickson K.I., Scalf P., McAuley E., Cohen N.J., Webb, A., Jerome, G.J., Marquez, D.X. & Elvasky, S. (2004). Cardiovascular fitness, cortical plasticity, and aging. PNAS U S A, 101 (9), 3316–21. doi: 10.1073/pnas. 0400266101
Romano Bergstrom, J. C., Howard Jr, J. H., & Howard, D. V. (2012). Enhanced implicit sequence learning in college‐age video game players and musicians. Applied Cognitive Psychology, 26(1), 91-96
Marton, K., Goral, M., Campanelli, L., Yoon, J., & Obler, L. K. (2017). Executive control mechanisms in bilingualism: Beyond speed of processing. Bilingualism: Language and Cognition, 20(3), 613-631.
Fletcher, J., Maybery, M. T., & Bennett, S. (2000). Implicit learning differences: A question of developmental level?. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26(1), 246.
Gamble K.R., Cummings T.J. Jr., Lo S.E., Ghosh P.T., Howard J.H. Jr. & Howard D.V. (2014). Implicit sequence learning in people with Parkinson’s disease. Front Hum Neurosci, 8 (563), 1-8. doi: 10.3389/fnhum.2014.00563